The univalence axiom for elegant Reedy presheaves

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Decomposing the Univalence Axiom

This paper investigates the univalence axiom in intensional Martin-Löf type theory. In particular, it looks at how univalence can be derived from simpler axioms. We first present some existing work, collected together from various published and unpublished sources; we then we present a new decomposition of the univalence axiom into simpler axioms. We argue that these axioms are easier to verify...

متن کامل

The Univalence Axiom in posetal model categories

In this note we interpret Voevodsky’s Univalence Axiom in the language of (abstract) model categories. We then show that any posetal locally Cartesian closed model category Qt in which the mapping Hom(w)(Z × B,C) : Qt −→ Sets is functorial in Z and represented in Qt satisfies our homotopy version of the Univalence Axiom, albeit in a rather trivial way. This work was motivated by a question repo...

متن کامل

The univalence axiom in cubical sets

In this note we show that Voevodsky’s univalence axiom holds in the model of type theory based on cubical sets as described in [2, 6]. We will also discuss Swan’s construction of the identity type in this variation of cubical sets. This proves that we have a model of type theory supporting dependent products, dependent sums, univalent universes, and identity types with the usual judgmental equa...

متن کامل

Voevodsky’s Univalence Axiom in homotopy type theory

In this short note we give a glimpse of homotopy type theory, a new field of mathematics at the intersection of algebraic topology and mathematical logic, and we explain Vladimir Voevodsky’s univalent interpretation of it. This interpretation has given rise to the univalent foundations program, which is the topic of the current special year at the Institute for Advanced Study. The Institute for...

متن کامل

Cubical Type Theory: A Constructive Interpretation of the Univalence Axiom

This paper presents a type theory in which it is possible to directly manipulate n-dimensional cubes (points, lines, squares, cubes, etc.) based on an interpretation of dependent type theory in a cubical set model. This enables new ways to reason about identity types, for instance, function extensionality is directly provable in the system. Further, Voevodsky’s univalence axiom is provable in t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Homology, Homotopy and Applications

سال: 2015

ISSN: 1532-0073,1532-0081

DOI: 10.4310/hha.2015.v17.n2.a6